

Scenario Simulation and Engineering Solution for Extreme Disasters

Xinzheng Lu

Institute of Disaster Prevention and Mitigation

Department of Civil Engineering

Tsinghua University, Beijing, China

Extreme disasters

not considered in conventional design

Very low occurrence possibility

Lack of knowledge

Very severe consequences

Must be prepared for

Challenges

Mega-structures

never constructed in human history

How can we prepare for something we do not understand?

– never happenedin human history

different disciplines– understood bynon-professional /

Typical super-tall buildings in China

Distribution of super-tall buildings (>300m) in China

Extreme disasters

1679, M8.0 Earthquake in Beijing

Scenario simulation

From Micro-scale to Macro-scale

Engineering solution

Typical examples

Super-tall buildings

Scenario simulation

Engineering solution

Large-span bridges

High-speed railway station

Numerical model

Experimental validation

Engineering solution

Nuclear power plant

Z15 (Chinese Cup)

- Height > 500m
- Seismic intensity 8
- Tallest building in such intensity

Experimental validation

Scenario simulation

Proposed engineering solution

Collapse margin increased 15%

Material consumption reduced 11% (84,338 ton)

Design of Qiongzhou Strait Bridge

Two design schemes

Plan A: Total length=4304m / Main span=1500m

Plan B: Total length=5400m / Main span=3000m

Design of Qiongzhou Strait Bridge

Scenario simulation

Design of Qiongzhou Strait Bridge

Proposed engineering solution

Plan	Hazards	Evaluation results (Risk)	
	Earthquake	16.05	
Plan A Cable stayed bridge	Ship collision	12.70	
V	Windstorm		
Plan B	Earthquake	22.62	
Suspend bridge	Ship collision	20.90	
	Windstorm		

- China has the longest highspeed railway system in the world
- The speed of train passing the station is larger than 200km/h

Numerical model and Experimental validation

Scenario simulation						

Proposed engineering solution:

Collision-proof columns

Conventional columns

Collision-proof columns

Impact of airplane to NPP

1979 three mile island nuclear station

2011 Fukushinia Nuclear Power Plant

1986 Chernobyl Nuclear Power Plant

From Purdue University

Impact of airplane to NPP

Numerical model and scenario simulation

Impact of airplane to NPP

 Proposed engineering solutions 182% 100% Conventional design Optimized design

Relative penetration energy

GIS

Computing model

Model validation

Refined FE model

Top displacement

Inter-story hysteretic model

Inter-story drift

 GPU (Graphic Processing Unit) based high performance computing

39x of speedup

Scenario simulation

Desktop Computer

4,255 buildings

40 s earthquake simulation

Accomplished in 216 s

Lu XZ, et al, A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing, *Advances in Engineering Software*, 2014

Scenario simulation

Scenario Simulation and Engineering Solution for Extreme Disasters

Numerical model

Experimental validation

Design methodology

Computational algorithm

Science

Technology

Engineering

Mathematic

Conclusions

Scenario Simulation

Engineering Solution

Human resilience

Knowing what may happen, how to respond

Recovery government

Provide vision, leadership, service, information

Infrastructure resilience

Ability to return to full occupancy and function

Resilient community

Thank you for your attention!

Xinzheng Lu

Email: luxz@tsinghua.edu.cn

Website: www.luxinzheng.net